
Detecting Denial of Service Attacks in Tor

Norman Danner, Danny Krizanc, and Marc Liberatore

Department of Mathematics and Computer Science
Wesleyan University

Middletown, CT 06459 USA

Abstract. Tor is currently one of the more popular systems for anonymiz-
ing near real-time communications on the Internet. Recently, Borisov et
al. proposed a denial of service based attack on Tor (and related sys-
tems) that significantly increases the probability of compromising the
anonymity provided. In this paper, we propose an algorithm for detect-
ing such attacks and examine the effectiveness of the obvious approach
to evading such detection. We implement a simplified version of the de-
tection algorithm and study whether the attack may be in progress on
the current Tor network. Our preliminary measurements indicate that
the attack was probably not implemented during the period we observed
the network.

Keywords: Anonymity, reliability, denial of service, attack, detection

1 Introduction

A low-latency anonymous communication system attempts to allow near-
real-time communication between hosts while hiding the identity of these
hosts from various types of observers. Such a system is useful whenever
communication privacy is desirable — personal, medical, legal, govern-
mental, or financial applications all may require some degree of privacy.
Financial applications that might benefit from such privacy include e-
cash or credit systems, contract proposal and acceptance, or retrieval of
financial data.
Dingledine et al. developed the Tor [1] system for such communication.
Tor (and other related systems) anonymizes communication by sending it
along paths of anonymizing proxies. Syverson et al. [2] showed that such
systems are vulnerable to a passive adversary who controls the first and
last proxies along such a path. More recently, Borisov et al. [3] showed
that an adversary willing to engage in denial of service (DoS) could
increase their probability of compromising anonymity. When a path is
reconstructed after a denial of service, new proxies are chosen, and thus
the adversary has another chance to be on the endpoints of the path.
Our contributions are as follows. We prove that an adversary engaging in
the DoS attack in an idealized Tor-like system can be detected by prob-
ing at most 3n paths in the system, where n is the number of proxies in
the system. Through simulation, we show that an adversary attempting
to avoid detection by engaging in DoS probabilistically can still be de-
tected, and that the attempt to avoid detection radically degrades the

effectiveness of the attack. Finally, using measurements of connection
drop rates across Tor nodes, we implement a version of the detection
algorithm and conclude it is unlikely that such an attack was in progress
during the time period the network was observed.
We introduce related work and present the attack in more detail in Sec-
tion 2. Section 3 describes the algorithm to detect attacker-controlled
nodes, and Section 4 describes one possible attacker strategy to avoid
detection, along with an evaluation of its effectiveness. This is followed
by our measurements of Tor node drop rates (Section 5) and the results
of a practical implementation of our detection algorithm (Section 6). We
conclude in Section 7.

2 The Denial of Service Attack

We model the Tor network with a fully connected undirected graph.1

The set N of vertices of the graph represent the Tor nodes (or routers),
and the edges represent network connections between nodes. We define
n to be |N |.
Tor sets up circuits (also referred to as tunnels) consisting of three nodes;
in our model, this equates to a path containing three vertices (in order)
and the corresponding edges between them. To simplify the analysis,
we allow the same node to appear on the path more than once – that
is, nodes are chosen uniformly at random with replacement. Application
level communications between an initiator and a responder is then passed
through the circuit. We assume that a timing cross-correlation attack
works perfectly, i.e., the adversary can break the system’s anonymity
properties if it controls the first and last node along the path by observing
the timing of communications between an initiator and responder.
In any attack we assume some subset C of N are compromised, that
is, they are collaborators under the control of an adversary that will
attempt to break the anonymity of users in the system. As with N , we
define c to be |C|. Here we limit our attention to the nodes within the
Tor network, under the assumption that an adversary will compromise
some of these nodes in an attempt to link initiators and responders.
In actual deployments of Tor, not all nodes can appear in all locations on
the path. In particular, only certain nodes can be the final node on the
path; in all other ways, they are identical to other nodes. These nodes
are referred to as exit nodes. Let E ⊆ N be the set of exit nodes where
e = |E|.
Syverson et al. [2] observed that a passive adversary controls both the

first and last node of a path with probability c2

n2 if all nodes may act
as exit nodes. In the case where exit nodes are selectively compromised

this may be improved to c2

ne
. (Currently approximately one third of Tor

nodes act as exit nodes at any one time.)
Levine et al. [4] observe that if long-lived connections between an initiator
and responder are reset at a reasonable rate then such an attack will be

1 Some individual Tor nodes may disable connections on specific ports or to specific
IP addresses. We have not determined if these significantly limit the graph.

able to compromise anonymity with high probability within O(n2

c2
ln n)

resets.
In order to further improve the chances of compromise of communications
over a Tor circuit a number of researchers [3, 5, 6] have suggested that
compromised nodes that occur on paths in which they are not the first
or last node artificially create a reset event by dropping the connection.
Borisov et al. [3] analyze the following version of this attack on Tor:

If the adversary acts as a first or last router on a tunnel, the tun-
nel is observed for a brief period of time and matched against all
other tunnels where a colluding router is the last or first router,
respectively. If there is a match, the tunnel is compromised; oth-
erwise, the adversary kills the tunnel by no longer forwarding
traffic on it. The adversary also kills all tunnels where it is the
middle node, unless both the previous and next nodes are also
colluding.

In this case, the adversary controls the endpoints of a randomly generated
path with probability

c3 + c2(n− c)

c3 + c2(n− c) + (n− c)3
=

α3 + α2(1− α)

α3 + α2(1− α) + (1− α)3

where α = c/n is the fraction of compromised nodes,
Assuming that not all nodes are exit nodes and C ⊆ E the endpoints of
the path are compromised with probability:

c3 + c2(n− c)

c3 + c2(n− c) + (n− c)2(e− c)
=

α3 + α2(1− α)

α3 + α2(1− α) + (1− α)2(e
n
− α)

The conclusion by Borisov et al. is that their optimization brings sig-
nificant gains to the attacker. As shown in Figure 1, it is strongly in the
attacker’s interest to kill circuits that can’t be compromised. The gain
from this attack is even more pronounced when exit nodes are selected
for compromise before other nodes.

3 Detecting the Attack

In this section we show how to detect such a DoS attack using O(n)
probes of the network where a probe consists of setting up a circuit us-
ing a given path through the network and passing data through it. We
assume a naive attacker that follows the procedure precisely as formu-
lated above. Further we assume that the time taken for an attacker to
detect a match is negligible when compared to the expected time be-
tween circuit kills due to unreliable but uncompromised nodes. I.e., we
assume that if a probe results in a circuit being killed inside of a short
period of time after being created, this is due to the fact that there is
at least one compromised node on the circuit and that it is not the case
that both endpoints of the corresponding path are compromised. Note
that by sending traffic with a predictable pattern through the circuit we
can make the time taken for detection very low. As we discuss below,
by repeating the experiment we can make the probability of confusing

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 0.2 0.4 0.6 0.8 1

P
ro

ba
bi

lit
y

of
 p

at
h

co
m

pr
om

is
e

Fraction of compromised nodes

passive adversary
selective passive adversary, 1/3 exit nodes

adaptive adversary (Borisov)
selective adaptive adversary, 1/3 exit nodes

Fig. 1. A comparison of the probability of an circuit being compromised, given either
the passive or adaptive (Borisov) adversary. The selective adversary, in either case,
compromises only exit nodes.

a kill due to unreliable but uncompromised nodes and a kill due to a
compromised node as small as we wish.
First observe that it is impossible by using only the above probes of the
network to distinguish between the case where all nodes are compromised
and no nodes are compromised. In both cases, all probes will result in
circuits that are not killed. Therefore we assume the number of compro-
mised nodes is greater than 0 but less than n. Further we assume that
the length of the paths used by the Tor implementation under attack is
fixed independent of (and strictly less than) n and that paths consist of
distinct nodes. We can prove:

Theorem 1. Under the above assumptions, using O(n) probes we can
detect all of the compromised nodes of the Tor network. For the case of
paths of length 3 the number of probes required is at most 3n.

Proof. Let k be the length of the paths used by the Tor implementation
under consideration. We denote the probe consisting of the path of length
k starting with u1 and ending with uk with edges between ui and ui+1

for i = 1, . . . , uk−1 by (u1, . . . , uk). We say a probe succeeds if the circuit
is not killed, otherwise it fails.
Choose a set X = {x1, . . . , xk−1} of k − 1 (distinct) nodes, arbitrarily.
Perform the following set of probes: (x1, y, x2, . . . , xk−1) for each y not
in X. One of three cases results.
Case 1: All n − k + 1 probes succeed. In this case both x1 and xk−1

are compromised. For any other node y, we can determine if it is com-
promised by using the probe (x1, . . . , xk−1, y). If it succeeds then y is
compromised, if not, y is uncompromised. (To test nodes in X, replace
them in the above probe set with an arbitrary node not in X and try a
probe with the given node in the last position.)

Case 2: Among the n− k + 1 probes, at least one succeeds and at least
one fails. In this case all of the nodes in X are uncompromised, any y for
which the probe failed is compromised, and any y for which the probe
succeeded is uncompromised.

Case 3: All n − k + 1 probes fail. In this case we can conclude that at
least one of the nodes in X is compromised. For each pair of nodes in X
create a probe set where this pair comprises the first and last node of the
path, positions 3 through k − 1 consist of the remaining nodes of X (in
an arbitrary fixed order), and the second position is taken by each y not
in X. If for any of these probe sets the result is all the probes succeed
then both endpoints are compromised and we proceed as in Case 1 to
determine the status of the remaining nodes. If for all pairs the result is
all probes fail, then there is precisely one compromised node in X. For
each node in X create a probe set where that node is in the first position,
the remaining nodes are positions 2 through k − 1 and the last node is
taken by each y not in X. If for any of these probe sets the result is at
least one circuit that succeeds and at least one circuit that fails then the
node in the first position is compromised, the remaining nodes in X are
uncompromised, any y for which the probe was a success is compromised
and any y for which the probe was a failure is uncompromised. If all of
the above probe sets result in all probes failing then there is exactly one
compromised node and it is in X. For each node in X create a probe
that does not use that node but uses the remaining nodes in X (plus two
other arbitrary nodes not in X). The unique such probe that succeeds
points to the single compromised node.

The worst case number of probes occurs in Case 3 in which at most
(
(

k
2

)
+ k + 1)(n− k + 1) + k probes beyond the initial n− k + 1 probes

that define the cases. As k is assumed to be fixed independent of n this
is clearly O(n). For the case k = 3, Case 3 requires that we determine
which the endpoints is compromised which can be done using at most
two probe sets of size n− k + 1 one of which will determine the identity
of the remaining compromised nodes. In this case at most 3(n − k + 1)
probes are required. ut

Above we state that (under the perhaps unrealistic assumption that the
results of probes are independent) repeated probes can be used to dis-
tinguish the cases of an attacker killing a circuit and that of a circuit
consisting of honest nodes failing. To do this, for any given probe of the
above algorithm we repeat the probe l times where l (determined below)
depends upon on the probability of error in the algorithm we find ac-
ceptable. If all l of the trials fail we report that the path contains at least
one compromised node and that at least one end point that is honest.
Otherwise we conclude the path contains all honest nodes or both end
points are compromised.

Assume that an attacker always successfully kills a circuit it is on that it
does not control. Then a probe consisting of l independent trials can be
wrong only if (a) an honest circuit fails l times in a row or (b) a circuit
with both end points compromised fails l times in a row. Assume that
any given circuit fails due to unreliable nodes or edges with probabil-
ity f . Then, under the independence assumption, (a) or (b) occur with

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 0.2 0.4 0.6 0.8 1

P
ro

ba
bi

lit
y

of
 c

irc
ui

t c
om

pr
om

is
e

Probability of circuit kill

10% compromised
20% compromised
33% compromised
50% compromised

Fig. 2. Probability of an circuit formation being compromised, given the adaptive
adversary (performing a DoS), varying the fraction of killed paths.

probability at most f l, i.e., the probability that a probe consisting of l
independent trials is correct is at least 1−f l. If the algorithm performs m
such probes the probability they are all correct is greater than (1−f l)m.
Assume we require that our algorithm correctly identifies all nodes as
either honest or compromised with probability at least 1− ε. Then it is
easy to see (using standard approximations) that choosing

l >
ln ln(1

1−ε
)− ln m

ln f

is sufficient. If we take m = 3000 (the worst case number of probes for
a 1000 node Tor network), f = .2 (an approximate bound the observed
probability of path failures on Tor — see Section 5) and ε = .001 (so
that we expect less than one misidentification) we see that l = 10 is
more than sufficient.
Of course, we require that the above repeated probes be independent
which is highly unlikely to be the case. But by spreading the repetitions
out over time we can increase our confidence that observed failures are
not random.

4 Attacker Strategy

An intelligent attacker will be aware that killing circuits at a rate higher
than the background rate can, in theory, be detected. Here, we consider
the case of an attacker that kills some fraction of the circuits through
nodes under its control. In particular, circuits that contain compromised
nodes, but where both endpoints are not compromised, are killed. The
attacker can choose to kill any fraction of such circuits, from all (which
is Borisov’s description of the DoS attack) to none (equivalent to the
passive adversary).

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 0.2 0.4 0.6 0.8 1

P
ro

ba
bi

lit
y

of
 c

irc
ui

t c
om

pr
om

is
e

Probability of circuit kill

5% compromised
10% compromised
15% compromised
20% compromised
26% compromised
33% compromised

Fig. 3. Probability of an circuit formation being compromised, given the selective adap-
tive adversary (performing a DoS, all compromised nodes are exit nodes), varying the
fraction of paths killed. While we assume that the background kill rate is zero and we
fix e = n

3
, the general shape of the graph remains when changing these assumptions.

Figure 2 shows the effect of varying the kill probability for various frac-
tions of compromised nodes, obtained through simulations conforming to
the assumptions in Section 2. Clearly, the adaptive attacker is most ef-
fective when in control of many nodes, and when killing as many circuits
as possible.
In the deployed Tor system, only certain nodes are eligible to be last
in the circuit. The intelligent selective adversary compromises these exit
nodes. Figure 3 shows the effect of varying the kill probability for various
fractions of compromised exit nodes.
These results strongly suggest that the selective adversary is in a difficult
position. In failing to kill circuits, the adversary does no better than a
passive adversary. An adaptive adversary killing a fraction of circuits
results in small gains over the passive adversary for fractions that are not
close to one. As discussed in Section 3, an attacker that always kills paths
can be detected in a small number of probes; the same reasoning leads
to the conclusion that an adversary that kills any significant fraction of
paths can still be detected in a small number of probes.

5 Measuring Failure Rates in Tor

As already mentioned, implementation of our detection algorithm is de-
pendent upon knowing the background drop-rate for circuits in Tor. We
can consider a range of sophistication for the attacker, corresponding to
how much data the attacker must see before killing the circuit:

1. Minimal data. The strongest attacker knows to kill the circuit based
solely on the Tor circuit creation cells. Bauer et al. [6] describe such
an attacker.

2. Low data. A weaker attacker must wait until the circuit has been
successfully built, but can kill the circuit before any data is sent
along a TCP stream. The attacker might be able to send some data
through the circuit itself, or might observe the Tor cells sent from
the initiator to the exit node instructing the latter to open a TCP
connection.

3. High data. The weakest attacker observes the actual TCP data and
bases its decision to kill the circuit on that.

Accordingly, we conducted an experiment in which we repeatedly down-
loaded a file through Tor and measured the rates of the different failure
modes. The controlling process launches a curl process to download the
file. The Tor proxy is responsible for circuit creation; the controlling pro-
cess ignores circuits with exit policies that do not allow the download,
but otherwise attaches one curl process to one circuit. We then monitor
the various failure rates. Kills by the minimal-data attacker correspond
to circuit creation failures. Kills by the low-data attacker correspond to
attempting to attach a curl process to a successfully-built circuit, but
the process then receiving either no reply from the server or timing out.2

Kills by the high-data attacker correspond to a curl process failing to
completely download the file.
We present our findings in Figure 4.3 We can treat these failure rates
as upper bounds on the corresponding background rates in Tor. An im-
mediate conclusion that we can draw from these measurements is that
detecting a minimal-, low-, or high-data attacker using l-times repeated
probe version of our detection algorithm requires taking l = 10, 9, and
3, respectively. Since it is possible that some version of the DoS attack
was in progress when we performed our measurements, the failure rates
among honest nodes may in fact be lower; additional measurements along
the lines of those described in Section 6 are in order to identity poten-
tially suspicious nodes and determine whether the failure rates decrease
significantly when those nodes are removed from the experiment.

6 Detection in Practice

The detection algorithm described in Section 3 along with the measure-
ments made above provide a reasonably practical method for detecting
the DoS attack in progress, and serves as a theoretical upper bound on
the amount of work necessary to discover such an attack. A number of
simplifications are possible if we assume the existence of a single, pre-
sumably honest, onion router under our control. In essence, this single
honest router is a trustworthy guard node [7]. This trust is important:
Borisov et al. note that the use of guard nodes in general may make

2 We also used the Tor Control protocol to measure the failure rate of the instruction to
the exit node to open a TCP connection to the recipient; the results are comparable
to those reported here.

3 These rather high failure rates are consistent with those reported by Mike Perry
at BlackHat USA 2007, available at http://www.blackhat.com/html/bh-media-
archives/bh-archives-2007.html.

Circuits launched 4995
Circuit failure at hop 1 106 (2.1%)
Circuit failure at hop 2 258 (5.2%)
Circuit failure at hop 3 640 (12.8%)
Total circuit construction failures 1004 (20.1%) (minimal-data)

curl processes launched 3010
No reply or timeout 537 (17.8%) (low-data)
Partial file 6 (0.2%) (high-data)

Fig. 4. Observed Tor drop-rates corresponding to different-strength attackers.

the selective adversary more powerful when performing the predecessor
attack [8]. The assumption of a trusted guard node avoids this problem
entirely. We note that this assumption is not strong—by “trusted” here
we mean that the node itself is not under the control of an attacker.
This can be arranged by installing one’s own onion router and using it
as the guard node. We further note that this assumption hinges upon
the trusted node being indistinguishable from other nodes and that it
be unknown to the adversary. If these conditions do not hold, then the
adversary can choose to not attack connections from the trusted node
and remain hidden. In this sense, the simplified detection algorithm is
easier for the attacker to game.

Regardless, what are the advantages of this approach? First, observe that
we need only probe nodes that are advertised as exit nodes, as there is
a clear reason for an attacker to control exit nodes over non-exit nodes.
Second, circuits in Tor are configurable by the initiator. In particular,
paths of length two can be created, where the first node is known to
be honest and the second, exit node’s behavior can be observed. These
simplifications allow for a practical, simplified algorithm for detecting
the attack. We describe this algorithm in the following text. We then de-
scribe our implementation of the algorithm as well as the limitations and
assumptions of the algorithm. Finally, we present the results of several
runs of the algorithm on the Tor network.

First, query the Tor directory servers for a list of all public nodes. Filter
this list based upon the nodes that are flagged as valid, running, sta-
ble, exit nodes, as these should be most advantageous for the adversary
to compromise. Call this list of nodes the candidates. Then, repeat the
following steps l times, where larger values of l increase certainty as de-
scribed in Section 3: For each candidate node, create a circuit where the
first node is known to be honest, and the second is a candidate. Retrieve
a file through this circuit, and log the results. Each such test either suc-
ceeds completely, or fails at some point, either during circuit creation
or other initialization, or during the retrieval itself. Either failure mode
could be the result of a natural failure (e.g., network outages, overloaded
nodes), or an attacker implementing the DoS attack. A candidate node

with a high failure rate is a suspect ; this failure rate can be tuned with
the usual tradeoff between false positives and negatives.
Once the list of suspect nodes is generated, the following steps are re-
peated l′ times for an appropriately chosen l′. Each possible pairing of
suspect nodes is used to create a circuit of length two. As above, the
circuits thus created are used to perform a retrieval, and the successes
and failures are logged. In this set of trials, we are looking for paths with
low failure rates over the l′ trials. Nodes on such paths could be under
control of an adaptive adversary, and are termed guilty.
Also, consider a graph, where vertices are nodes, and edges exist between
guilty nodes. If such paths form a clique, there are a limited number of
explanations: One is that the guilty nodes are actually malicious; another
is that all have good connectivity with one another, but bad connectivity
with the honest node used to form the list of suspects. We suspect that
larger cliques are less likely to be due to the latter, particularly if the
nodes appear to be running on disparate networks. We have not verified
this conjecture.
We implemented this algorithm on the Tor network, using a Tor node
we had been running for several months prior as our honest node. We
formed suspect lists with l = 20, looking for a failure rate of greater than
0.5 when retrieving a 100 kB file. We then attempted to find cliques of
guilty nodes, using l′ = 10 and a failure rate of less than 0.2.
Our results were mixed. Over the course of five days, we created and
tested candidate lists once per day, tested suspects, and identified cliques
of guilty nodes. Our observations are as follows. The set of candidates for
any particular trial contained around two hundred nodes, although the
union of all such sets contained nearly two hundred fifty nodes. Any given
trial typically discovered about twenty suspect nodes, though the union
of all such sets contained about fifty nodes. Two of the trials revealed
cliques of size five, though the membership sets of these two cliques were
disjoint.
Do these results indicate the presence of an attacker? Naively, if we were
to assume all tests were independent, the likelihood of such cliques arising
by chance alone is infinitesimal. However, the tests are not independent.
For example, a node that is overloaded will refuse connections, or perhaps
will be so congested that TCP timeouts will be reached, resulting in
a failure of the stream being carried by the circuit. Such an overload
will persist over time, reducing the independence between each of the l
probes sent to a given node. We attempted to control for this effect by
temporally spacing the probes by at least half an hour, but there is no
way for a given Tor node to be sure of the reason for a failure elsewhere
in a circuit.
We performed a modified version of this test. After creating the suspect
list, we interleaved probes of the suspect, again as exits, through our
honest node, as in the candidate probes. The purpose of these probes
were to determine if the suspect nodes’ performance had changed in the
time since the suspect list was generated. Again, results were mixed: some
suspects remained suspicious, while others had improved performance.
Without exception, those whose performance improved did not appear
to be guilty when examining the probes of suspect-paths.

We also performed a third version of test, where pairs of suspects were
the entry and exit nodes on a path of length three. The third node was
our trusted node. In this test, we saw the overall average failure rate
rise back to the level observed when searching for suspect nodes. No
suspicious cliques emerged.

More measurements should be performed to make more definitive state-
ments about the presence of the denial of service attack in the Tor net-
work. We plan to validate the simplified and general detection algorithms
in a private Tor network. We further plan to perform more systematic
measurements on the Tor network, depending upon the results of our
validation and feedback from the Tor community.

7 Conclusion

The denial of service attack on Tor-like networks is potentially quite
powerful, allowing an adversary attempting to break the anonymity of
users at a rate much higher than when passively listening. Fortunately,
this power comes at a price: We have shown that an attacker performing
the denial of service is easily detected. We have presented an algorithm
that deterministically detects such attackers with a number of probes
into the network linear in the number of nodes in the network. Fur-
ther, we have shown that while an attacker may choose to deny service
probabilistically in an attempt to avoid detection, such an attempt is
self-defeating: Most of the attacker’s gain occurs as the probability of
denial approaches one — lower values do not gain much over a passive
approach, but are still detectable in a linear number of probes. Finally,
we have presented preliminary evidence that no such attack is currently
being executed within the deployed Tor network, on the basis of the
background connection drop rate within Tor and on an practical version
of our detection algorithm.

References

1. Dingledine, R., Mathewson, N., Syverson, P.: Tor: The second-
generation onion router. In: Proceedings of the 13th USENIX Security
Symposium. (August 2004) 303–320

2. Syverson, P., Tsudik, G., Reed, M., Landwehr, C.: Towards an anal-
ysis of onion routing security. In: Proceedings of ACM Workshop
on Design Issues in Anonymity and Unobservability, Springer-Verlag,
LNCS 2009 (July 2000) 96–114

3. Borisov, N., Danezis, G., Mittal, P., Tabriz, P.: Denial of service or de-
nial of security? How attacks on reliability can compromise anonymity.
In: Proceedings of CCS 2007. (October 2007) 92–102

4. Levine, B.N., Reiter, M.K., Wang, C., Wright, M.K.: Timing attacks
in low-latency mix-based systems. In Juels, A., ed.: Proceedings of Fi-
nancial Cryptography (FC ’04), Springer-Verlag, LNCS 3110 (Febru-
ary 2004) 251–265

5. Overlier, L., Syverson, P.: Locating hidden servers. In: Proceedings of
IEEE Symposium on Security and Privacy, IEEE Computer Society
(2006) 100–114

6. Bauer, K., McCoy, D., Grunwald, D., Kohno, T., Sicker, D.: Low-
resource routing attacks against tor. In: Proceedings of ACM Work-
shop on Privacy in the Electronic Society, ACM (October 2007) 11–20

7. Wright, M., Adler, M., Levine, B.N., Shields, C.: Defending Anony-
mous Communication Against Passive Logging Attacks. In: Proc.
IEEE Symposium on Security and Privacy (Oakland). (May 2003)
28–41

8. Wright, M., Adler, M., Levine, B.N., Shields, C.: An Analysis of the
Degradation of Anonymous Protocols. In: Proc. ISOC Symposium
Network and Distributed System Security (NDSS). (February 2002)
38–50

