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Abstract. Cryptographic credential infrastructures, such as Public key
infrastructure (PKI), allow the building of trust relationships in elec-
tronic society and electronic commerce. At the center of credential in-
frastructures is the methodology of digital signatures. However, methods
that assure that credentials and signed messages possess trustworthiness

and longevity are not well understood, nor are they adequately addressed
in both literature and practice. We believe that, as a basic engineering
principle, these properties have to be built into the credential infrastruc-
ture rather than be treated as an after-thought since they are crucial to
the long term success of this notion. In this paper we present a step in the
direction of dealing with these issues. Specifically, we present the basic
engineering reasoning as well as a model that helps understand (some-
what formally) the trustworthiness and longevity of digital signatures,
and then we give basic mechanisms that help improve these notions.

Keywords. Credential infrastructures, PKI, digital signatures, key com-
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1 Introduction

The celebrated notion of digital signing was put forth as modern cryptography
started. Its security definition [10], and the security of many of its derived notions
(like that of group signature [5]), does not capture the fact that the signature
lives in a system and does not assure the trustworthiness and longevity of digital
signatures over time within a system context, due to the following reasons.

First, trustworthiness of digital signatures is questionable when a verifier
does not have other means to determine that a digital signature was indeed
issued or activated by the alleged signer (as was mentioned in [8]). To see this,
observe that private signing keys can be compromised in real computer systems
(cf., for example, [24, 13] for practical attacks). Such attacks can, in fact, defeat
even advanced digital signature techniques (e.g., forward-secure signing [1, 3],
key-insulated signing [7], intrusion-resilient signing [17], threshold signing [6],
proactive signing [23]), although the damage may be mitigated. Moreover, even if
a private signing key is stored in a tamper-resistant hardware (e.g., cryptographic



co-processor [29] or Trusted Platform Module [26]) that may also frustrate side-
channel attacks [19], the private signing function could still be compromised
because an attacker, who has compromised the computer of a signer, can request
the hardware to sign messages [21]. Note that compromises like the above (i.e.,
access to the signing function) were assumed also in the digital signature security
definition of [10] as well as in the relevant variants (e.g., threshold and proactive
signatures [14], group signing [2]).

Second, longevity of digital signatures becomes questionable because a dis-
honest signer can later “plausibly” repudiate some (past) signatures. To see this,
it has been observed early on that a dishonest signer could abuse her private
signing key or function to commit unlawful activities, while blaming them to the
attacker who has compromised the private signing key. As an extreme example,
a dishonest signer can launch attacks against her own computer so as to fool the
machine forensics mechanisms and commit fraud without being held account-
able. Note that such threats were not accommodated in the cryptographic model
of digital signatures [10] as well as its variants (e.g., [14, 2]), because it always
treats the signers as the target of attacks.

The above two threats to trustworthiness and longevity of (non-anonymous
and anonymous) digital signatures are inevitable due to the imperfection of
forensics analysis mechanisms. Moreover, there is an unexpected threat to the
trustworthiness and longevity of digital signatures — many or all of the crypto-
graphic keys in use may be compromised — either due to a fundamental progress
in cryptanalysis (e.g., a polynomial-time factorization algorithm) or due to the
more likely Trojan Horses in operating systems and/or hardware devices. A spe-
cific attack of this kind is the recent incident of rogue CA [25].

Our contributions. We propose a novel model (Section 2) for helping under-
stand the trustworthiness and longevity of digital signatures based on various
realistic threats. Our model has the following features. First, it accommodates
a participant we call “liability-holder” (e.g., an employer, an insurance vendor
or the signer herself), which is responsible for the consequences of digital signa-
tures. This allows us to capture insider threats (i.e., malicious signers). Second,
it reflects the strength of the relevant security mechanisms: (1) compromise-
resistant mechanisms that may be deployed to prevent attacks from compromis-
ing the private signing keys or functions, or from compromising the signers; (2)
compromise-detection mechanisms that may be deployed to detect the compro-
mise of private signing keys or functions; (3) history-preservation mechanisms
that may be deployed to ensure the integrity of the system history state in-
formation; and (4) forensics-like analysis mechanisms that may be deployed to
determine when an attack actually occurred. Third, it brings a useful concept of
“grey period,” during which there may be some signatures for which we do not
know for sure who should be held accountable: the private signing key owners,
or the attacker that has compromised the private signing keys or functions.

Our model suggests as an ultimate goal to eliminate the grey periods (i.e.,
uncertainties) which capture the afore-mentioned inevitable threats against
trustworthiness and longevity of digital signatures. Although we are unable to



accomplish this, we present a solution (Section 3) reducing the length of grey
periods. Our solution is based on a digital signature anchoring service, whereby
digital signatures can be deposited at some servers that are operated by agents
we call anchors. The anchors and servers are only semi-trusted because they
cannot frame the honest users, and any misbehaving anchors/servers can be
immediately detected by any honest participant.

Finally, we extend (in Section 7) our solution to deal with the unexpected

threats that many or all of the employed cryptosystems may be broken.

Related works. We are not aware of works similar to the model we put forth
here. On the other hand, regarding our concrete solution to dealing with the
inevitable, namely for reducing the length of grey periods, there are three re-
lated prior works. These three important works represent the state of uneasi-
ness regarding the actual trust and robustness of credential mechanisms. First
among them is digital timestamping, due to Haber and Stornetta [12], which
aimed at improving the trustworthiness of digital signatures. However, the sim-
ilarity between timestamping and our solution is limited to the fact that both
of them use collision-resistant hash functions to build data structures that are
variants of Merkle trees [22]. Whereas, the important differences between them
are the following. (i) Digital timestamping only asserts when a signature was
issued, and does not offer any extra assurance that a signature was indeed is-
sued by the alleged signer. That is, timestamping cannot deal with what we will
call hit-and-run and insider attacks, which are alleviated by our solution. (ii)
Our data structure adopts a “signature verification keys”-oriented organization,
which leads to convenient queries and signature verifications even if the past
signatures are truncated (so as to avoid monotonic increase of the tree size).
This has no counterpart in [12].

Second, Just and van Oorschot [18] investigated the problem of undetected
key compromises, and proposed an architecture-centric solution by introducing
a third party. Although their solution bears some similarity to ours, there are
important differences. (i) They assumed that each user has two cryptographic
keys — one private signing key and one symmetric message authentication key
— such that compromise of one does not mean compromise of the other. In their
suggested scenario, one key may be stored on a user’s local computer whereas the
other is stored on a hardware token. In contrast, we assume that a user may keep
her keys on a single computer, which may be compromised. (ii) The third party in
their model is assumed to be fully-trusted; otherwise, their constructions would
allow the third party, who may be colluding with an attacker that may have
compromised the private signing key of an honest user, to frame the honest user
without being held accountable. In contrast, the third party in our solution is
only semi-trusted because it has no power to frame any user and its misbehavior
can be detected by any honest user.

Third, Itkis [15] investigated a primitive-centric method, which requires the
use of absolutely random bits (i.e., even pseudorandom bits are not sufficient)
due to a subtle technical reason. This is very restrictive, and our architecture-
centric method does not suffer from this (i.e., pseudorandomness is sufficient



in our approach). Moreover, Itkis [15] did not consider the important issue of
managing digital signatures, whereas we do.

Outline. Section 2 presents our model of digital signature trustworthiness and
longevity. Section 3 presents a solution framework for reducing the length of
grey periods. Before presenting an instantiation of the framework in Section 6,
we present two building-blocks in Section 4 and Section 5, respectively. In Section
7 we discuss how to deal with the unexpected situation where cryptosystems in
use are broken. Section 8 concludes this paper with some open problems. Due to
space limitation, we leave the review of cryptographic primitives to Appendix A
and analyses of the schemes to the full version of the present paper [28].

2 Modeling Signature Trustworthiness and Longevity

Participants. We consider a liability-holder in addition to the signer, verifier
and attacker in the cryptographic model of digital signatures [10]. The signer or
user u has a pair of public and private keys (pku, sku) with respect to some secure
signature scheme (in the sense of [10]). We assume that pku is published via some
reliable means (e.g., certified by a certificate authority). Since the private key sku

is often stored on u’s computer, it can get compromised (e.g., when u’s computer
is compromised). Moreover, u can become dishonest or malicious at some point
in time. We assume that all the participants are ppt algorithms.

Adversary. In addition to the traditional attacker based on pure cryptanalysis,
we consider three attacks against the trustworthiness and longevity of digital
signatures. Among the three attacks, which we call hit-and-run, hit-and-stick
and insider, we are only able to deal with the hit-and-run attack and the insider
attack (dealing with the hit-and-stick attack is a challenging open problem).

– Hit-and-run attack: Such an adversary compromises u’s computer, steals the
private key sku, and then leaves the computer (i.e., does not reside on the
computer or tamper with it). The adversary may abuse the compromised
sku to produce digital signatures that can be verified using pku.

– Hit-and-stick attack: Such an adversary resides on the victim computer after
compromising it (e.g., by embedding Trojan Horses or tampering with the
system). In this case, the victim computer is virtually controlled by the
adversary until the compromise is detected. This is a very powerful attack
that dismisses many countermeasures. For example, deploying a mechanism
to tell a computer program and a human being apart (in hope of ensuring
that every signing request is issued by a human being) does not necessarily
defeat the attack, as long as the mechanism is implemented on the same
victim computer. Defeating such an adversary is left open, and seems to
require independent replication (in different machines and so on).

– Insider attack: Such an attack is launched by u herself. In the case that some
third party (e.g., employer of u or some insurance provider) is the liability-
holder for signatures generated using sku, the attack is clearly possible. Even
if u is the liability-holder, the attack is still possible because u may have the



incentive to deny some (past) signatures by blaming them on the attacker
who compromised sku. Moreover, u can launch an attack against sku so that
she can attribute signatures to the compromise of sku.

Private signing key lifecycle. As depicted in Figure 1, a private signing
key sku becomes effective (e.g., via the certification of pku) at time T0, ceases
functioning (e.g., via the immediate revocation of pku) at time T4 because its
compromise has become evident. At time T4, forensics-like analysis may be in-

timeT0 T1 T2

private signing key 
becomes effective

user or key gets 
compromised (known 
only to the attacker)

private signing key ceases 
functioning (e.g., revoked)

grey period: for some signatures we may not know who 
should be held accountable (i.e., the user or the attacker)

T4

user alleged key 
compromise (i.e., 
forensics-based  
non-compromise)

T3

“forensics-like analysis”-based 
user or key compromise time 

compromise-resistance interval compromise-detection interval

history tamper-resistance forensics-like analysis capability

Fig. 1. A scenario of private signing key lifecycle

voked to help determine the time interval [T0, T1] during which neither the user
u nor the private key sku was compromised, and the time interval [T3, T4] such
that the user u or the private key sku was compromised at time no later than
T3. The interval [T1, T3] can be seen as the approximation of T2, which is the
actual time at which u or sku gets compromised but may be known only to the
attacker (i.e., the defender may never discover the time T2 for certain).

Applying the model to analyze the hit-and-run and hit-and-stick at-

tacks. The following observations (see the lower-half of Figure 1) apply to both
attacks, no matter if u is the liability-holder or not. First, the time interval
[T3, T4] captures the capability of the forensics-like mechanisms in after-the-fact
investigation of attacks. A better capability means a longer [T3, T4] or smaller T3.
Second, the time interval [T0, T2] captures the security strength of u’s computer
system in tolerating attacks. A better security means a longer [T0, T2]. Third,
the time interval [T2, T4] captures the capability of the mechanisms for detecting
compromises. Fourth, the time interval [T1, T4] is called the “grey period” be-
cause there may exist some signatures that were issued during this time interval,
but cannot be attributed to the actual producer (i.e., u or the adversary who
has compromised sku) with certainty.



Applying the model to analyze the insider attacks. The following obser-
vations apply, again, regardless of whether u is the liability-holder or not. First,
the time interval [T0, T1] captures strength of u’s computer in tolerating tam-
pering attacks. This is important because u may be honest at time T0, becomes
dishonest at time T2, and may have the incentive to tamper the system history
information. A better history tamper-resistance means a longer [T0, T1]. Second,
the time interval [T3, T4] captures the capability of the forensics-like mecha-
nisms for after-the-fact investigation of attacks. A better capability means a
longer [T3, T4]. Third, the time interval [T0, T2] captures the security strength
of u’s computer system in tolerating attacks (e.g., preventing or deterring u
from being compromised). A better security means a longer [T0, T2]. Fourth, the
time interval [T2, T4] captures the capability of the mechanisms for detecting
compromises. Fifth, the time interval [T1, T4] is again the “grey period.”

Properties of ideal solutions. The above analyses offer the following insights.
First, it is an ideal case to maximize the interval [T0, T1]. Namely, to make u’s
system history state information tamper-resistant, which means that T2−T1 = 0
and thus the signer cannot deny any past signatures it generated before u or sku

is compromised. Second, it is the ideal case to maximize the interval [T3, T4],
namely to deploy perfect forensics-like mechanisms for after-the-fact investiga-
tion of compromise of either u or sku, which would imply T3−T2 = 0. Third, it is
ideal to maximize the interval [T0, T2] by enhancing the security of a user’s com-
puter and/or private signing key sku. Fourth, it is ideal to minimize the interval
[T2, T4]. Since it may not be possible to absolutely prevent the compromise of
keys or computers, we do need mechanisms that can detect their compromise as
soon as possible. We require that the compromise-detection mechanism have no
false positives, although this may imply that it can return an answer like “I don’t
know.” This is crucial because in many cases the disputes can lead to lawsuits
that require reliable evidence. Fifth, it is ideal to minimize the “grey period”
interval [T1, T4]. Given that private signing keys can eventually get compromised
and that the attackers may not always get held accountable, insurance would
become a very useful mechanism for enhancing the trustworthiness of digital
signatures (e.g., a signature assured either by an employer or by a third party
would be more trustworthy). It is thus important to shorten the “grey period”
so as to protect the liability-holder.

3 DSAS: A Framework for Reducing Grey Periods

Our solution framework, as depicted in Figure 2, is called Digital Signature An-
choring Service (DSAS). In this framework, we consider a set of users or signers,
verifiers, and anchors that can be the liability-holders or some economically-
motivated third parties. Note that some participants may play the roles of both
verifiers and signers. Suppose that each signer has a pair of public and private
keys with respect to a digital signature scheme that is secure in the sense of
Goldwasser et al. [10]. The anchors are assumed to be highly secure — their sys-
tems cannot be compromised by average attackers (nevertheless, in Section 7 we
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will discuss what if the anchors’ cryptosystems may be compromised). However,
the anchors are assumed to be only semi-trusted, meaning that they may launch
attacks against some honest signers as long as such attacks cannot be traced
back to them. An anchor maintains an Anchor’s Bulletin Board (ABB), which
is used to publish the digital signatures deposited at it.

Definition 1. (DSAS) A DSAS scheme consists of the following protocols.
DSAS.Initialization: Given a primary security parameter κ, each participant gen-
erates the cryptographic keys. The signature verification keys are appropriately
published. Moreover, a data structure called Anchor’s Bulletin Board (ABB) is
initialized as ABB0 at time t0.
DSAS.Deposit: Suppose the current content of ABB is ABBi−1, which was up-
dated at time ti−1. When a signer, u, deposits a signature, sig, the anchor
authenticates u as well as sig. If both authentications succeed (i.e., true ←
DSAS.Deposit(1κ, u, sig)), the anchor returns a receipt (e.g., the anchor signs
the message that “sig will appear in ABBi at time ti”). Note, as mentioned
above, that the upper-layer application of the DSAS service is orthogonal to the
focus of the present paper.
DSAS.Update: Denote by ∆i the signatures deposited after time ti−1. At time
ti, the anchor updates ABBi−1 as ABBi ← DSAS.Update(1κ, ABBi−1, ∆i). The
anchor may send back to every user, who deposited a signature after ti−1, an “at-
testation” indicating how the user may verify that her signature is appropriately
published in ABBi.
DSAS.Retrieve: Kinds of queries can be issued with respect to ABBi, dependent
upon the applications. The first example is for a signer to check that her deposited
signature appropriately appeared in ABBi. The second example is for anyone to
check that, given ABBi−1 and ∆i, ABBi was appropriately updated. The third
example is for anyone to retrieve the signatures deposited during a time period.

To define security of DSAS, let adversary A have access to the following ora-
cles: Init(1κ), which executes DSAS.Initialization(1κ); Deposit(1κ, u, sig), which
executes DSAS.Deposit(1κ, u, sig) that returns true; Update(1κ, ABBi−1, ∆i),



which executes DSAS.Update(1κ, ABBi−1, ∆i); Retrieve(1κ, . . .), which executes
DSAS.Retrieve(1κ, . . .); Corr, which captures that the anchor becomes dishonest
and returns all the secrets of the anchor; HaR(u), which captures the hit-and-
run attack and returns the cryptographic secrets of signer u; Insider(u), which
turns an honest signer u into an insider attacker.

Note that HaR(·), Insider(·), and Corr may be queried immediately after
querying Init so as to accommodate the situations where some participants are
compromised at system initialization. Note also that multiple Init queries may
be made, but we only need to consider one in which the attacker may succeed.
The notations ∃ and 6 ∃ indicate whether a specific query was ever made. In order
to capture the successful attack events, we allow A to invoke DSAS.Deposit and
DSAS.Update. Such executions are different from the Deposit and Update oracle
queries, which lead to executions on behalf of the signers or the anchor. Formally,

Definition 2. (properties of DSAS) A DSAS scheme should possess:
DSAS.correctness: If the signers and the anchor are honest, the anchor’s ABB

is always appropriately updated with respect to the deposits and, for any i, anyone
can verify ABBi = DSAS.Update(1κ, ABBi−1, ∆i).
DSAS.no-impersonation: The probability that an attacker successfully imper-
sonates an honest signer, whose cryptographic secrets are not compromised, to
the anchor is negligible in κ. Formally,

Pr

[
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= ε(κ),

DSAS.attack-evidence: Suppose the private key of an honest signer was com-
promised at time t and the attacker deposited a signature using the compromised
key at time t′ > t. Then this compromise can be detected when the victim user
deposits her first signature at time t∗ > t′ > t. Moreover, given two conflicting
signatures, it is possible to infer when the signer’s computer compromised by a
hit-and-run attack or the signer became an insider.

4 Building-block I: Anchor’s Bulletin Board (ABB)

Definition 3. (ABB) An ABB scheme consists of the following algorithms.
ABB.Initialization: Initialization of the data structure ABB0 at time t0.
ABB.Update: Denote by ∆i the signatures deposited by the honest users after
time ti−1. At time ti, the anchor updates ABBi−1 to ABBi, where ABBi ←
Update(1κ, ABBi−1, ∆i).
ABB.Retrieve: Kinds of queries can be issued with respect to ABBi, dependent on
the applications.



To define security of ABB, let adversary A have access to the following or-
acles: Init(1κ), which executes ABB.Initialization(1κ); Update(1κ, ABBi−1, ∆i),
which executes ABB.Update(1κ, ABBi−1, ∆i); Retrieve(1κ, . . .), which executes
ABB.Retrieve(1κ, . . .); Corr, which captures that an anchor becomes dishonest
and returns all the secrets of the anchor. Note also that multiple Init(1κ) queries
may be made, but we only need to consider one in which the attacker may suc-
ceed. To capture the successful attack events, we allow the attacker to explicitly
execute ABB.Update, which is different from the oracle query of Update(1κ, ·, ·).

Definition 4. (properties of ABB) An ABB scheme should have:
ABB.correctness: ABB is always appropriately updated, meaning that anyone
can always verify that ABBi = ABB.Update(1κ, ABBi−1, ∆i) for any i.
ABB.uniqueness: The probability for anyone to provide ABBi−1 6= ABB′i−1 or

∆i 6= ∆′i but ABB.Update(1κ, ABBi−1, ∆i) = ABB.Update(1κ, ABB′i−1, ∆
′
i) is

negligible in κ. Formally,
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 = ε(κ),

Construction. We design ABB as a three-level, binary Merkle hash tree. At
the bottom there are many Level 3 hash trees, each of which represents the
signatures with respect to a signature verification key. At the middle there is a
single Level 2 hash tree, each leaf of which corresponds to the root of a Level 3
hash tree. At the top there is a single Level 1 hash tree, the right-most child of
which corresponds to the root of the Level 2 hash tree. The ABB is “signature
verification keys”-oriented. This is to allow efficient queries about (some) digital
signatures with respect to a public verification key deposited during a time
interval. This is fulfilled by retrieving only one leave of the Level 2 hash tree.

Given ABB published at time ti, we denote by Mj(ti) the root of the jth
Level 3 hash tree in ABBi, by N(ti) the root of the Level 2 hash tree in ABBi,
and by R(ti) the root of the Level 1 hash tree in ABBi.

An ABB may be signatures-preserved, meaning that all the signatures that
have been deposited so far appear in the ABB (i.e., the size of the ABB is mono-
tonically increasing), or signatures-compressed, meaning that only the most re-
cently deposited signatures explicitly appear in the ABB whereas previously
deposited signatures are “compressed” in a certain way. We will mention their
differences in our ABB construction, which is given below and analyzed in [28].
An illustrative example is given in Appendix B.
ABB.Initialization: ABB0 is initiated at time t0 as a Level 2 hash tree, whose root
N(t0) = R(t0) is the Level 1 hash tree (i.e., a single node tree at this point),
and leaves M1(t0), M2(t0), . . . correspond to the individual-wise or group-wise
signature verification keys.
ABB.Update: Denote by ∆j,i an ordered set (or list) of the signatures that have
been deposited with respect to the jth Level 3 hash tree since time ti−1. At time
ti, the anchor executes the following to update ABBi−1 to ABBi.

1. Update the Level 3 hash trees: There are two cases.



Signatures-preserved case: For each j, the jth Level 3 hash tree with root
Mj(ti−1) in ABBi−1 becomes the left-most leaf node in the new jth
Level 3 hash tree, and the signatures in ∆j,i appear as the other leaf
nodes, whose left-to-right order corresponds to the order at which they
were deposited.

Signatures-compressed case: For each j, the root Mj(ti−1) of the jth Level 3
hash tree in ABBi−1 (i.e., every node other than the root is “pruned”)
becomes the left-most leaf node in the new Level 3 hash tree, and the
signatures in ∆j,i appear as the other leaf nodes, whose left-to-right order
corresponds to the order at which they were deposited.

The values of the roots of the new Level 3 hash trees in ABBi are computed
as usual. In the ideal case, the new Level 3 hash trees are perfect binary
trees.

2. Update the Level 2 hash tree: After updating the roots of the new Level 3
hash trees, the value of the root of the new Level 2 hash tree is also updated
as N(ti).

3. Update the Level 1 hash tree: The root of the Level 1 hash tree in ABBi−1,
namely R(ti−1), becomes the left child of the new Level 1 hash tree in ABBi.
The root of the new Level 2 hash tree, namely N(ti), becomes the right child
of, the new Level 1 hash tree in ABBi. The value of the root of the new Level
1 hash tree, namely R(ti), is computed as usual. The resulting signature as
well as the new Level 1, 2, and 3 trees are published as ABBi.

ABB.Retrieve: Kinds of queries can be issued with respect to ABBi, dependent
upon the applications. Examples are: First, given a signature verification key
corresponding to the jth Level 3 hash tree and a time interval [t, t′], one can
immediately find all the signatures deposited during that time period in the
signatures-preserved case. This can be done by, for example, computing the
difference between the corresponding two Level 3 trees updated at time t and t′,
respectively. In the case only one copy of the tree is preserved (although this is
unlikely because storage is getting cheaper and cheaper), the same task can be
done by extending the root of Level 3 trees to include the time at which the ABB,
and thus the Level 3 trees, are updated. Similarly, given a time interval [t, t′], one
can find all the signatures deposited during that time period in the signatures-
preserved case (e.g., by combining the signatures deposited during that period
of time). Second, given a signature deposit receipt, one can immediate check
whether the signature in question does appear in the Level 3 tree corresponding
to the signature verification key. Third, given the “attestation” of a deposited
signature — the values of the siblings of the nodes on the path from the signature
in question to the root, one can immediately check whether the attestation ends
at a leaf or the root of the Level 1 hash tree. If there is anything wrong, a
complaint is issued against the anchor. The validity of the complaint can be
checked by any honest party (e.g., judge) or in a distributed fashion, and the
dishonest participant may be appropriately punished.



5 Building-block II: Stateful Authentications (AUTH)

Definition 5. (stateful authentication method) A stateful authentication method
AUTH consists of the following (interactive) algorithms.
AUTH.Initialization: Given a primary security parameter κ, this (interactive) al-
gorithm bootstraps some cryptographic contexts. Moreover, the user u maintains
some state information stateu,v and the verifier v maintains some state infor-
mation statev,u.
AUTH.Authentication: This is an interactive algorithm run by u and v.

1. The user u presents the verifier v a bitstring η, a function of stateu,v.
2. Upon receiving from u a bitstring η, v executes an algorithm to decide whether

to accept the bitstring. The decision is based on, among other things, the
state information statev,u. If the authentication is successful, denote it by
true← AUTH.Authentication(1κ, 〈η, stateu,v〉, statev,u).

3. If v accepts, v updates statev,u and u updates stateu,v appropriately.

To define security of AUTH, let A have access to the following oracles:
Init(1κ), which executes AUTH.Initialization(1κ); Authentication(1κ, u, v), which
executes AUTH.Authentication(1κ, 〈η, stateu,v〉, statev,u) that returns true; HaR(u),
which captures the hit-and-run attack and returns the cryptographic secrets of
signer u; Insider(u), which turns an honest signer u into an insider attacker.
Note that HaR(·) and Insider(·) may be queried immediately after querying
Init(1κ) so as to accommodate the situations where some participants are com-
promised at system initialization. Note also that multiple Init(1κ) queries may
be made, but we only need to consider one in which the attacker may succeed.
The notation ∃ and 6 ∃ indicate whether a specific query was ever made. To
capture the successful attack events, we allow the attacker to explicitly execute
AUTH.Authentication. Such executions are different from the Authentication or-
acle queries, which lead to executions on behalf of the authenticators.

Definition 6. (properties of stateful authentication methods) A stateful au-
thentication method should have the following properties:
AUTH.correctness: For any execution of AUTH.Authentication between an hon-
est user u and an honest verifier v, v always accepts.
AUTH.no-impersonation: An adversary, who does not compromise the cryp-
tographic key of an honest user u, can impersonate u with only a probability
negligible in κ. Formally,

Pr





(σ, stateA)← AInit(1κ),Authentication(1κ,·,·),HaR(·),Insider(·)(1κ) :
6 ∃Insider(u)∧ 6 ∃HaR(u)∧
true← AUTH.Authentication(1κ, 〈·, stateA〉, statev,u)



 = ε(κ),

AUTH.attack-evidence: Suppose the cryptographic key of an honest user was
compromised at time t and the attacker authenticated at least once using the
compromised key to the verifier at time t′ > t. Then this compromise can be
detected when the victim user authenticates herself to the verifier the first time
at time t∗ > t′ > t.



Construction. The design rationale behind our construction is given in Ap-
pendix C. The construction is based on the afore-discussed “twisted” use of
forward-secure signatures, where the signer plays the role of a user in the AUTH

scheme. It can be based on any concrete forward-secure signature scheme (e.g.,
[1, 3, 16]), as long as it satisfies the properties reviewed in Section A. Let δT

be the allowed maximal time interval before a forced key update, and θ is the
allowed number of authentications before a forced key update. Denote by T the
system time corresponding to the most recent execution of the key update algo-
rithm, by T ′ the current system time, by α the index of the periods that have
elapsed, by β the accumulated number of authentications since system initial-
ization, by γ the the number of new authentications since time T . Selections of
these parameters are dependent upon the system policies. The construction is
presented below, analysis of which is given in [28].
AUTH.Initialization: A user u, who plays the role of the signer in a forward-secure
signature scheme, generates its public and private key pair (pku, sku,0). The user
u sends pku to the verifier v and sets stateu,v ← 〈T, δT , θ, α = 0, β = 0, γ =
0, pku, sku,α〉, whereas v sets statev,u ← 〈T, δT , θ, α = 0, β = 0, γ = 0, pku, pku,α〉
where pku,α can be derived from pku.
AUTH.Authentication: Suppose u holds stateu,v = 〈T, δT , θ, α, β, γ, pku, sku,α〉
and v holds statev,u = 〈T, δT , θ, α, β, γ, pku, pku,α〉.

– The key update algorithm is executed when one of the following three condi-
tions is satisfied: (1) the system is just initialized; (2) the user has conducted
θ authentications; (3) T ′−T ≥ δT . In any case, u sets α← α+1 and γ ← 0,
derives sku,α from sku,α−1, and sets stateu,v ← 〈T, δT , θ, α, β, γ, pku, sku,α〉;
whereas v sets α ← α + 1 and γ ← 0, possibly derives pku,α from pku, and
sets statev,u ← 〈T, δT , θ, α, β, γ, pku, pku,α〉.

– The following authentication protocol is executed whenever one of the fol-
lowing two conditions is satisfied: (1) the key has just been updated and
thus a dummy authentication is executed; (2) the user needs to authenticate
herself to the verifier. The protocol has the following steps:
1. User u generates a forward-secure signature σ on the concatenation of

T, α, β, γ as well as possibly a (dummy) message using private key sku,α.
Then, it sends σ as well as the relevant information to the verifier v.

2. If σ is valid with respect to pku,α, v accepts and sets statev,u ← 〈T, δT , θ, α, β+
1, γ + 1, pku, pku,α〉.

3. If v accepts, u sets stateu,v ← 〈T
′, δT , θ, α, β + 1, γ + 1, pku, sku,α〉.

6 Putting the Pieces Together to Instantiate DSAS

Having explored the building-blocks, now we present our DSAS main construc-
tion, which is an integration of the above Constructions I and II. Its security
and extensions are described in [28].
DSAS.Initialization: Given a primary security parameter κ, the anchor SA gener-
ates a pair of public and private keys (pkSA, skSA) for signing receipts and possi-
bly the roots of the Level 1 hash trees. A user u initiates its own cryptosystem



(pku, sku) for generating digital signatures that need be deposited. Moreover,
the following two procedures are executed. (i) Execute AUTH.Initialization to
initialize a stateful authentication method (as in Construction II). Especially,
(pku, sku,0) is generated. (ii) Execute ABB.Initialization to initialize ABB0.
DSAS.Deposit: A user u executes AUTH.Authentication to authenticate herself to
the anchor using sku,i (as in Construction II) on either a dummy message M ′

or a signature sig with respect to pku, where sig is to be deposited. The anchor
SA verifies the validity of the request as in AUTH.Authentication using pku,i, and
in the case of depositing a digital signature, the validity of sig using pku. The
anchor may return a receipt signed with skSA (e.g., its signature on the message
that “this signature, sig, will appear in ABBi at time ti”). The receipt may be
forwarded by the signer to the signature verifier.
DSAS.Update: The anchor SA executes ABB.Update, and may send back to the
users the “attestations” of their newly deposited signatures. An attestation in-
cludes (1) the time ti at which ABBi is published, and (2) the siblings of all the
nodes on the path from the node that is being attested to the root R(ti).
DSAS.Retrieve: This is the same as ABB.Retrieve.

7 Dealing with the Unexpected

Recall that we assumed that the hash functions are collision resistant, the digital
signature schemes and the forward-secure digital signature schemes are secure
with respect to the respective well-accepted definitions. What if some or even
all of these assumptions are broken by a powerful attacker? Note that our model
already accommodated that the private signing keys may be compromised by
whatever means, which subsumes that the private keys are cryptanalyzed, which
in turn breaks the security of the digital signature schemes. Moreover, if the
private signing keys are compromised by whatever means, it would be possible
that the forward-secure signing keys are compromised. Since the forward-secure
signing scheme is employed to provide another layer of protection, it would be
without loss of generality to focus on the situation where the hash functions may
be broken [27] and the private signing keys may be compromised. For example,
the very recent incident — digital signatures based on MD5 hash function allow
the attacker to obtain a rogue CA certificate [25] — can be adequately dealt
with using our solution by depositing the certificate signatures.

Given such a powerful attacker, it is possible that the attacker can present
faked signatures that can be verified with respect to the ABB. As we now discuss,
there are a range of methods for alleviating the damage of such an attacker.

We start with the scenario that the hash function h may be broken (i.e., it
turns out not to be collision-resistant). To deal with this, we can append each
node (both leaf and internal) of the ABB tree with a value computed using a
“newly-available”, supposed-to-be-more-secure hash function, denoted by h. For
example, in the case of Figure 3(c), the leaf node annotated with h(pk4) now
becomes a pair (h(pk4), h(h(pk4))), and the leaf node annotated with h(sig1)
now becomes a pair (h(sig1), h(h(sig1))). Then, the internal node annotated



as a = h(h(pk4), h(sig1)) now becomes a pair (a, h(h(h(pk4)), h(h(sig1)))). The
same procedure is applied throughout the tree in a bottom-up fashion. Note that
it should be clear that we cannot simply replace, for example, the root R(t2) with
(R(t2), h(R(t2)). Note also that the above method was inspired by Haber [11],
who deals a similar problem but in a simpler situation. This way, compromising
hash function h and all the digital signing keys — except the anchor’s private
key skSA for signing the root of ABB— after the employment of h does not allow
the attacker to breach security of DSAS. In what follows we deal with the two
exceptions: (1) the anchor’s private signing key skSA may be compromised; (2)
no such h is available.

Q1: What if the signing key skSA of the anchor is compromised? Recall that
the anchor may use skSA to issue deposit receipts and/or sign the root of the
ABB trees. In the case skSA is compromised, the attacker could abuse it to
impersonate the anchor to issue cryptographically-legitimate receipts. However,
such an attack can be detected when the anchor updates the ABB because the
signature verifiers cannot validate the receipts, which are forwarded by the signer
to the verifiers. In response to such an emergence, the anchor needs to identify
which signatures are truly deposited at its ABB via the DSAS service, and which
signatures are not. For this purpose, we can let the anchor commit another
pair of public and private keys, say (pk′SA, sk′SA), when pkSA is first published or
certified (by a higher-level CA). To further enhance security, the commitment
scheme could be “information-theoretically hiding and computationally binding”
such that even a computationally unbounded attacker cannot figure out pk′SA

before the anchor decommits it, except for a negligible probability. Moreover,
the cryptosystem corresponds to pk′SA may be different from the cryptosystem
corresponds to pkSA (e.g., “discrete logarithm”-based vs. factorization-based)
and may use a larger security parameter. Then, the anchor could use sk′SA to
sign the receipts of the signatures that were deposited at the anchor itself, where
the receipts were previously signed using skSA. Of course, if skSA is compromised
by the attacker who breaks into the anchor’s computer or device, it is natural
that sk′SA is stored on a device different from the one that stores skSA, which is
always a prudent practice anyway.

Note that the above method of introducing a new pair of public and private
keys (pk′SA, sk′SA) can be extended to introduce a set of such cryptosystems, which
exhibit increasing strength of security (e.g., using increasingly larger security
parameters). Note also that the above method has the consequence that we
must put a stronger trust, than in the basic scheme, in the anchor because the
anchor has the potential to dispute signatures it endorsed before (e.g., when the
anchor realized the risk of endorsing certain signatures may be too high at a
later point in time). Fortunately, this may be tolerable because the anchor has
a short period of time (i.e., between two updates of ABB) to decide whether
to cheat or not. Thus, there is still a “grey period” as indicated in the model
discussed in Section 2, which is however short.

Q2: What if there is no hash function such as h that is available, or such
h is available only after the attacker compromises the cryptographic signing



keys (either by cryptanalysis of by breaking into the anchor’s computer or de-
vice) as well as h? This scenario is similar to the case that the private key of
the anchor, namely skSA, may be compromised. Thus, we can adopt a similar
countermeasure, namely by including an “information-theoretically hiding and
computationally-binding” commitment of public key pk′u in the certificate of the
public key pku. This way, when sku is compromised, which can be detected after
at most a single period of time (i.e., between two updates of ABB), user u can
use sk′u to certify the signatures generated using sku in the past periods of time.
Of course, we must assume that sk′u is stored at a secure place different from
the place where sku was stored, at least in the case that sku could be compro-
mised by breaking into u’s computer or device (rather than cryptanalysis). Note
that this mechanism can alleviate the problem when the signing algorithms of
the users used some hash functions that may be later broken — a scenario not
accommodate in the afore-discussed h being broken later. Note also that user u
could abuse this method to dispute some signatures she issued before, but ar-
guably within the last period of time (i.e., between two updates of ABB). That
is, there is still a “grey period” as indicated in the model discussed in Section 2,
but it is short.

8 Conclusion and Future Work

We presented a model for understanding trustworthiness and longevity of digital
signatures in the presence of compromised private signing keys/functions, or
malicious signers. The model offers hints for designing solutions to alleviate the
problem of grey periods, during which there are signatures for which we are not
certain who should be held accountable. The hints guided us to design a solution
to deal with the inevitable threats. We also showed how to extend our solution
to deal with the unexpected threats that all of the deployed cryptosystems are
broken.

Our investigation inspires several interesting open problems. First, how can
we defeat the hit-and-stick attack? Second, is it possible to eliminate grey pe-
riods? Third, the compromise-detection mechanism we investigated is passive.
How can we design a proactive one (e.g., is it possible to exploit some Hon-
eyKeys — the cryptographic analogy of techniques known as Honeynet — to
help detect compromises of computers)? Fourth, how should we deal with the
case of some “non-traditional” use of digital signatures. For example, abuse-
free contract signing [9] is a kind of signatures useful in contract signing. It is
not clear how can we adapt the present solution to accommodate them without
jeopardizing the abuse-freeness property to some extent.
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A Cryptographic Preliminaries

Let κ be a security parameter. We often prove the security of a cryptographic
scheme by showing that the probability an adversary breaks the scheme, ε(κ),
is negligible. A function ε : N → R

+ is negligible if for any c there exists κc

such that ∀κ > κc we have ε(κ) < 1/κc. We say a family of hash functions
h : {0, 1}k × {0, 1}∗ → {0, 1}κ is collision-resistant if, for any K ∈ {0, 1}k, the
probability for any probabilistic polynomial-time (ppt) algorithm to find x1 and
x2, such that x1 6= x2 but hK(x1) = hK(x2), is negligible in κ. Given that hK(·)
is determined once K is chosen, we will write it as h(·) for short. We will use
Merkle hash trees [22], in which the value of an internal node is the hash of its
children’s values.

Digital signatures. A signature scheme consists of: a key generation algorithm
that takes as input a security parameter κ and outputs a pair of public and
private keys (pk, sk); a signing algorithm that takes as input a message m and
a private key sk, and outputs a signature σ; a verification algorithm that takes
as input a message m, a public key pk and a candidate signature σ, and decides
whether to accept the signature. Security of digital signatures is traditionally
captured by the existential unforgeability under adaptive chosen-message at-
tack, meaning that the probability for an attacker, who may have access to many
message-signature pairs, to generate a new signature is negligible in κ [10].

Forward-secure signatures. In a forward-secure signature scheme [1, 3], the
system time is divided into periods (e.g., days) such that the private key of a
signer is changed periodically (i.e., daily), but the public key remains unchanged.
Such a scheme consists of: a key generation algorithm for generating a pair of
public and private keys (pk, sk0); a key update algorithm for the signer to peri-
odically update its period private key as ski at the beginning of the ith period,
and perhaps also for a verifier to derive the corresponding period public key pki

(from pk) at the beginning of the ith period; a signing algorithm for the signer
to sign messages using the period private key ski; and a verification algorithm
for a verifier to check the validity of a signature using the period public key pki.
Basically, the forward-security property means that an adversary, who may
have compromised period private key ski (possibly i =∞), can generate a valid
signature with respect to any pkj with only a negligible probability, where j < i.
The intuition is that compromise of a current private key does not allow the
adversary to compromise any past private key.

B An Illustrative Example

Figure 3 shows some illustrative snapshots of an ABB. The trees framed by
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Fig. 3. An illustration of an example ABB snapshots

double solid lines are the Level 1 hash trees, the trees framed by single solid
lines are the Level 2 hash trees, and the trees framed by single dashed lines are
the Level 3 hash trees.

Suppose there are four users (or groups of users in the case of depositing
anonymous signatures). Figure 3(a) depicts ABB0, which was initialized at time
t0. Specifically, the leaves of the Level 2 hash tree correspond to the four public
keys. The root value is R(t0) = N(t0) = h(h(h(pk1), h(pk2)), h(h(pk3), h(pk4))),
where h is a collision-resistant hash function. Note that the Level 1 hash tree
consists of a single node, namely the root of the Level 2 hash tree. Moreover,
each leaf of the Level 2 hash tree can be seen as the root of the corresponding
Level 3 hash tree, which consists of a single node though.

Suppose during the time interval between t0 and t1 the owner of pk4 de-
posited two signatures, sig1 and sig2. ABB1 is depicted in Figure 3(b). Note
that the signatures-preserved case and the signatures-compressed case are the



same, because there are no signatures to compress at this point. Note that
the root of the updated Level 3 hash tree corresponding to pk4 is M4(t1) =
h(h(h(pk4), h(sig1)), h(sig2)), the root of the updated Level 2 hash tree is N(t1),
and the root of the updated Level 1 hash tree is R(t1) = h(R(t0), N(t1)). The
attestation for signature sig1 is (t1; h(pk4), h(sig2), . . . , R(t0), R(t1)), and so on.

Suppose during the time interval between t1 and t2, the owner of pk4 de-
posited one signature, sig3. There are two cases:

– Figure 3(c) depicts ABB2 in the signatures-preserved case. The root of the
updated Level 3 hash tree becomes M4(t2) = h(M4(t1), sig3), the root of
the updated Level 2 hash tree becomes N(t2), and the root of the updated
Level 1 hash tree becomes R(t2) = h(R(t1), N(t2)). Moreover, the updated
Level 3 hash tree has all previously deposited signatures, as well as h(pk4),
as its leaves.

– Figure 3(d) depicts ABB2 in the signatures-compressed case. The updated
Level 1 and 2 hash trees are the same as in the signatures-preserved case, but
the updated Level 3 hash tree does not have all previously deposited signa-
tures as its leaves. Indeed, the new root M4(t2) only has the “compression”
of the signatures, denoted by M4(t1), as its left child.

C Design Rationale

As mentioned before, our framework aims at detecting the compromise of a
private signing key as soon as possible. This can be fulfilled via a stateful au-
thentication method coupled with a “twisted” use of forward-secure signatures;
this is done in a fashion independent of the digital signatures that are being de-
posited. The twist is due to the following. First, a user updates her private key
with respect to the adopted forward-secure signature scheme either after signing
a pre-determined number of messages, or after a pre-determined period of time
(this is particularly relevant when a user does not issue digital signatures often).
Second, whenever a user updates her private key in the adopted forward-secure
signature scheme, the user should use the updated private key to authenticate
herself to the anchor for a dummy message (this can be automatically done by
the user’s software for a better deployment convenience). The design can be
justified by answering the following two questions.
Q1: Why forward-secure signatures, but not others? We examined other seem-
ingly plausible designs, which however do not fulfill the desired assurance. First,
we notice that a symmetric key authentication system, traditional message au-
thentication scheme and forward-secure message authentication scheme [4] alike,
does not fulfill the desired assurance. This is because the anchor is only semi-
trusted, and thus can leak an honest signer’s symmetric authentication key to an
attacker without being held accountable. If the attacker compromises an honest
signer’s private key, which is used to generate digital signatures that need be
deposited, the attacker can generate valid signatures with respect to some past
time. These signatures can make (some of) the honest signer’s past signatures
questionable, because the signed messages may be contradictory to each other.



Perhaps more importantly, a dishonest signer can plausibly repudiate some previ-
ously deposited signatures by claiming that they were generated by an attacker,
which causes a longer grey period [T1, T4] because the virtual interval [T1, T2]
becomes longer. For a similar reason, it does not work to let a signer and the
anchor maintain a common state information such as an incremental counter, or
the time at which the last signature was deposited. Second, the above vulner-
ability suggests to adopt an asymmetric design. A concrete example is to let a
user set up a one-way hash chain (cf. Lamport [20]) such that the user selects s0

and sends s` = H`(s0) to the anchor. Then the ith deposit request is associated
with s`−i = H`−i(s0), where H is a member of a one-way hash function family.
However, this design still has the afore-mentioned vulnerability that can cause
a longer grey period [T1, T4]. This is because when the user is compromised, s0

is compromised and thus the attacker can derive any si (even without colluding
with the anchor).

By utilizing forward-secure signatures, the above vulnerabilities are dismissed
and [T1, T2] is reduced, even if T2 is not known to the defender. It is possible
to replace forward-secure signatures with, for example, signatures corresponding
to independent period public keys. However, this would require the users to
frequently generate fresh public and private key pairs.
Q2: Why the twisted, but not the standard, use of forward-secure signatures for
authentication? A standard use of forward-secure signatures, while providing the
desired “asymmetry,” has the following vulnerability. Suppose a signer is honest
at system initialization time T0, but becomes dishonest at time T2. Suppose
T ∗ > T2 is the time at which the private key with respect to the adopted
forward-secure signature scheme should be updated, but the now dishonest user
does not follow the protocol. When the compromise becomes evident at time
T4, the dishonest signer can blame all the signatures generated during the time
interval [T2, T4] to the attacker who has compromised its private key. That is,
the standard use of forward-secure signatures does not provide any means to
deal with such a malicious behavior. The problem is caused by the fact that the
periodical key update operations are done at the signer end and at the anchor
end in an independent fashion. Our “twist” alleviates this problem, by forcing
a signer to authenticate herself to the anchor whenever there is a private key
update. Moreover, the signer is forced to update her period private key whenever
(1) she has authenticated a pre-determined number of times since the last key
update, or (2) a pre-determined length of time has elapsed since the last key
update. This means that the resulting periods are not necessarily of the same
length, but the longest time interval between two authentications conducted by
a signer is upper bounded by a pre-determined parameter. Putting this into the
context of the above example, the signer is thus forced to authenticate herself to
the verifier at time T ∗, where T2 < T ∗ < T4. This leads to a shorter grey period
[T ∗, T4].


